Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.

Identifieur interne : 000495 ( Main/Exploration ); précédent : 000494; suivant : 000496

Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.

Auteurs : Vladimir L. Kolossov ; Jessica N. Beaudoin ; Nagendraprabhu Ponnuraj ; Stephen J. Diliberto ; William P. Hanafin ; Paul J A. Kenis ; H Rex Gaskins

Source :

RBID : pubmed:25994788

Descripteurs français

English descriptors

Abstract

Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.

DOI: 10.1152/ajpcell.00006.2015
PubMed: 25994788
PubMed Central: PMC4504939


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.</title>
<author>
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
</author>
<author>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
</author>
<author>
<name sortKey="Ponnuraj, Nagendraprabhu" sort="Ponnuraj, Nagendraprabhu" uniqKey="Ponnuraj N" first="Nagendraprabhu" last="Ponnuraj">Nagendraprabhu Ponnuraj</name>
</author>
<author>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
</author>
<author>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
</author>
<author>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
</author>
<author>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25994788</idno>
<idno type="pmid">25994788</idno>
<idno type="doi">10.1152/ajpcell.00006.2015</idno>
<idno type="pmc">PMC4504939</idno>
<idno type="wicri:Area/Main/Corpus">000527</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000527</idno>
<idno type="wicri:Area/Main/Curation">000527</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000527</idno>
<idno type="wicri:Area/Main/Exploration">000527</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.</title>
<author>
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
</author>
<author>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
</author>
<author>
<name sortKey="Ponnuraj, Nagendraprabhu" sort="Ponnuraj, Nagendraprabhu" uniqKey="Ponnuraj N" first="Nagendraprabhu" last="Ponnuraj">Nagendraprabhu Ponnuraj</name>
</author>
<author>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
</author>
<author>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
</author>
<author>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
</author>
<author>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
</author>
</analytic>
<series>
<title level="j">American journal of physiology. Cell physiology</title>
<idno type="eISSN">1522-1563</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antioxidants (pharmacology)</term>
<term>Biosensing Techniques (MeSH)</term>
<term>CHO Cells (MeSH)</term>
<term>Cricetulus (MeSH)</term>
<term>Electron Transport Complex III (antagonists & inhibitors)</term>
<term>Electron Transport Complex III (metabolism)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glutathione (metabolism)</term>
<term>HCT116 Cells (MeSH)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Membrane Potential, Mitochondrial (drug effects)</term>
<term>Mitochondria (drug effects)</term>
<term>Mitochondria (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (drug effects)</term>
<term>Reactive Oxygen Species (metabolism)</term>
<term>Sulfhydryl Compounds (pharmacology)</term>
<term>Swine (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Transfection (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Antioxydants (pharmacologie)</term>
<term>Cellules CHO (MeSH)</term>
<term>Cellules HCT116 (MeSH)</term>
<term>Cellules HEK293 (MeSH)</term>
<term>Complexe III de la chaîne respiratoire (antagonistes et inhibiteurs)</term>
<term>Complexe III de la chaîne respiratoire (métabolisme)</term>
<term>Cricetulus (MeSH)</term>
<term>Espèces réactives de l'oxygène (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Mitochondries (effets des médicaments et des substances chimiques)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Potentiel de membrane mitochondriale (effets des médicaments et des substances chimiques)</term>
<term>Stress oxydatif (effets des médicaments et des substances chimiques)</term>
<term>Suidae (MeSH)</term>
<term>Techniques de biocapteur (MeSH)</term>
<term>Thiols (pharmacologie)</term>
<term>Transfection (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Electron Transport Complex III</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Electron Transport Complex III</term>
<term>Glutaredoxins</term>
<term>Glutathione</term>
<term>Reactive Oxygen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antioxidants</term>
<term>Sulfhydryl Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe III de la chaîne respiratoire</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Membrane Potential, Mitochondrial</term>
<term>Mitochondria</term>
<term>Oxidative Stress</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Mitochondries</term>
<term>Potentiel de membrane mitochondriale</term>
<term>Stress oxydatif</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe III de la chaîne respiratoire</term>
<term>Espèces réactives de l'oxygène</term>
<term>Glutarédoxines</term>
<term>Glutathion</term>
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antioxydants</term>
<term>Thiols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biosensing Techniques</term>
<term>CHO Cells</term>
<term>Cricetulus</term>
<term>HCT116 Cells</term>
<term>HEK293 Cells</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Swine</term>
<term>Time Factors</term>
<term>Transfection</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules CHO</term>
<term>Cellules HCT116</term>
<term>Cellules HEK293</term>
<term>Cricetulus</term>
<term>Facteurs temps</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Suidae</term>
<term>Techniques de biocapteur</term>
<term>Transfection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25994788</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>09</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1522-1563</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>309</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>American journal of physiology. Cell physiology</Title>
<ISOAbbreviation>Am J Physiol Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.</ArticleTitle>
<Pagination>
<MedlinePgn>C81-91</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.</AbstractText>
<CopyrightInformation>Copyright © 2015 the American Physiological Society.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kolossov</LastName>
<ForeName>Vladimir L</ForeName>
<Initials>VL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Beaudoin</LastName>
<ForeName>Jessica N</ForeName>
<Initials>JN</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ponnuraj</LastName>
<ForeName>Nagendraprabhu</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DiLiberto</LastName>
<ForeName>Stephen J</ForeName>
<Initials>SJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hanafin</LastName>
<ForeName>William P</ForeName>
<Initials>WP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kenis</LastName>
<ForeName>Paul J A</ForeName>
<Initials>PJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gaskins</LastName>
<ForeName>H Rex</ForeName>
<Initials>HR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R33-CA-137719</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Am J Physiol Cell Physiol</MedlineTA>
<NlmUniqueID>100901225</NlmUniqueID>
<ISSNLinking>0363-6143</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000975">Antioxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017382">Reactive Oxygen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 7.1.1.8</RegistryNumber>
<NameOfSubstance UI="D014450">Electron Transport Complex III</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000975" MajorTopicYN="N">Antioxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015374" MajorTopicYN="N">Biosensing Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016466" MajorTopicYN="N">CHO Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003412" MajorTopicYN="N">Cricetulus</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014450" MajorTopicYN="N">Electron Transport Complex III</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045325" MajorTopicYN="N">HCT116 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053078" MajorTopicYN="N">Membrane Potential, Mitochondrial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017382" MajorTopicYN="N">Reactive Oxygen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013552" MajorTopicYN="N">Swine</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014162" MajorTopicYN="N">Transfection</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25994788</ArticleId>
<ArticleId IdType="pii">ajpcell.00006.2015</ArticleId>
<ArticleId IdType="doi">10.1152/ajpcell.00006.2015</ArticleId>
<ArticleId IdType="pmc">PMC4504939</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Free Radic Biol Med. 2007 May 1;42(9):1369-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17395010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Neurol. 2007 Feb;203(2):512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17049515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Jul 1;67(13):6392-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17616699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 27;282(30):21889-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2007;39(9):1698-706</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Aug 10;130(3):427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17602868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2008 Feb;233(2):238-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18222979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 1;44(5):768-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18267208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jun;5(6):553-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Aug 19;47(33):8678-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18652491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Nov;11(11):2685-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2010 Mar;15(3):1242-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20335977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Sep 1;13(5):621-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20088706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):12828-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20566882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes Obes Metab. 2010 Oct;12 Suppl 2:116-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21029308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol In Vitro. 2011 Feb;25(1):199-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21055460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Sci. 2011 Mar;120(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2011 Feb;50(2):98-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21486251</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Oct 1;51(7):1289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21777669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;810:183-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22057568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Dec 7;14(6):819-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22100409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biosyst. 2012 Feb;8(2):650-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22134636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2012 Apr;26(4):1442-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22202674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2013 Feb;9(2):119-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23242256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Mar 20;18(9):1114-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22938199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anticancer Drugs. 2013 Jun;24(5):504-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23511429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Oct 4;439(4):517-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24025674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2014 Jan;28(1):485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24115050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Biol Med (Maywood). 2014 Apr;239(4):394-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24586100</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Toxicol. 2014;59:25.1.1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24789364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Clin Cancer Res. 2014;33:92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25425315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2015 Feb 27;589(5):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25637873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jul;1853(7):1574-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25769432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Dec 1;51(11):1943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 2000 Aug;72(2 Suppl):653S-69S</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10919972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Nutr. 2001 Apr;85(4):409-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11348555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2003 Jan;60(1):6-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):13044-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14722062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2004 Sep 1;382(Pt 2):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15175007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 1989 Dec;56(6):1053-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2611324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1993 Apr;264(4 Pt 1):C961-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8386454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1993 Oct 1;90(19):9171-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8415673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1994 Jul;17(1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7959167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 26;279(48):50455-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2006 Oct 27;163(1-2):54-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Jun 22;358(1):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17475217</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Beaudoin, Jessica N" sort="Beaudoin, Jessica N" uniqKey="Beaudoin J" first="Jessica N" last="Beaudoin">Jessica N. Beaudoin</name>
<name sortKey="Diliberto, Stephen J" sort="Diliberto, Stephen J" uniqKey="Diliberto S" first="Stephen J" last="Diliberto">Stephen J. Diliberto</name>
<name sortKey="Gaskins, H Rex" sort="Gaskins, H Rex" uniqKey="Gaskins H" first="H Rex" last="Gaskins">H Rex Gaskins</name>
<name sortKey="Hanafin, William P" sort="Hanafin, William P" uniqKey="Hanafin W" first="William P" last="Hanafin">William P. Hanafin</name>
<name sortKey="Kenis, Paul J A" sort="Kenis, Paul J A" uniqKey="Kenis P" first="Paul J A" last="Kenis">Paul J A. Kenis</name>
<name sortKey="Kolossov, Vladimir L" sort="Kolossov, Vladimir L" uniqKey="Kolossov V" first="Vladimir L" last="Kolossov">Vladimir L. Kolossov</name>
<name sortKey="Ponnuraj, Nagendraprabhu" sort="Ponnuraj, Nagendraprabhu" uniqKey="Ponnuraj N" first="Nagendraprabhu" last="Ponnuraj">Nagendraprabhu Ponnuraj</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000495 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000495 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25994788
   |texte=   Thiol-based antioxidants elicit mitochondrial oxidation via respiratory complex III.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25994788" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020